Advanced Quantizer Designs for FDD-based FD-MIMO Systems Using Uniform Planar Arrays
نویسندگان
چکیده
Massive multiple-input multiple-output (MIMO) systems, which utilize a large number of antennas at the base station, are expected to enhance network throughput by enabling improved multiuser MIMO techniques. To deploy many antennas in reasonable form factors, base stations are expected to employ antenna arrays in both horizontal and vertical dimensions, which is known as full-dimension (FD) MIMO. The most popular two-dimensional array is the uniform planar array (UPA), where antennas are placed in a grid pattern. To exploit the full benefit of massive MIMO in frequency division duplexing (FDD), the downlink channel state information (CSI) should be estimated, quantized, and fed back from the receiver to the transmitter. However, it is difficult to accurately quantize the channel in a computationally efficient manner due to the high dimensionality of the massive MIMO channel. In this paper, we develop both narrowband and wideband CSI quantizers for FDMIMO taking the properties of realistic channels and the UPA into consideration. To improve quantization quality, we focus on not only quantizing dominant radio paths in the channel, but also combining the quantized beams. We also develop a hierarchical beam search approach, which scans both vertical and horizontal domains jointly with moderate computational complexity. Numerical simulations verify that the performance of the proposed quantizers is better than that of previous CSI quantization techniques.
منابع مشابه
Millimeter-Wave Beamformed Full-dimensional MIMO Channel Estimation Based on Atomic Norm Minimization
The millimeter-wave (mmWave) full-dimensional (FD) MIMO system employs planar arrays at both the base station and user equipment and can simultaneously support both azimuth and elevation beamforming. In this paper, we propose atomic-norm-based methods for mmWave FD-MIMO channel estimation under both uniform planar arrays (UPA) and non-uniform planar arrays (NUPA). Unlike existing algorithms suc...
متن کاملPlanar and SPECT Monte Carlo acceleration using a variance reduction technique in I131 imaging
Background: Various variance reduction techniques such as forced detection (FD) have been implemented in Monte Carlo (MC) simulation of nuclear medicine in an effort to decrease the simulation time while keeping accuracy. However most of these techniques still result in very long MC simulation times for being implemented into routine use. Materials and Methods: Convolution-based force...
متن کاملPractical Low Complexity Linear Equalization for MIMO-CDMA Systems
This article first reviews recently proposed techniques for adaptive and direct linear MIMO equalization in the context of MIMO-CDMA systems and in particular with application to a MIMO-extended UMTS-FDD downlink. The focus is thereby mainly on the complexity of the algorithms. The second part of the paper proposes frequency domain (FD) MIMO equalization using the overlap/add FFT method in conj...
متن کاملImplementation and evaluation of FD-MIMO beamforming schemes for highway scenarios
Institute of Telecommunications Mobile Communications Department Telecommunications Master programme Implementation and evaluation of FD-MIMO beamforming schemes for highway scenarios by Félix Pablo CANO PAÍNO With the widespread growth of urban environments and the appearance of vehicleto-X access communications, new techniques have emerged to overcome this densification matter. One promising ...
متن کاملOptimization of Channel Capacity for In- Door Mimo Systems Using Genetic Algorithm
The geometrical parameters of antenna arrays in a multiple-input multiple-output (MIMO) link that will maximize the ergodic channel capacity of the system are investigated. The problem of selecting the optimum number of the elements at the base station antenna array is also included. The genetic algorithm technique is applied for the optimisation process, using the ergodic capacity as a fitness...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1703.10739 شماره
صفحات -
تاریخ انتشار 2017